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The booster ionization profile monitor (IPM) obtains transverse beam profiles by measuring the
distribution of ions resulting from interaction of the proton beam with background gas in the beam
chamber. The challenge of the IPM operation is that the measured ion distribution is not an exact
representation of the beam distribution, since the ion trajectories are influenced by the electromagnetic
field of the beam. We have developed a new model for the dependence of the IPM measurement on the
beam parameters, assuming a Gaussian beam distribution. Our model of the ion dynamics in the
detector was constrained by making independent measurements of the horizontal beamwidth at
injection and extraction and comparing these to data taken from the IPM at the same time. Our
calibration results in the formula �measured � �real � C1N�p1

real, where N is the number of protons in the
machine, in units of 1012, C1 � �1:13� 0:06� � 10�5, in units of �meters�1�p1=1012, and p1 �
�0:615� 0:013; the subscript ‘‘measured’’ indicates the raw IPM measurement, the subscript ‘‘real’’
the true beamwidth. This result is the first detailed calibration of the response of the booster IPM based
on experimental data.

DOI: 10.1103/PhysRevSTAB.6.102801 PACS numbers: 41.85.Ew, 41.85.Qg
profiles obtained with the IPM against independent beam
profile measurements. These measurements were obtained

electric field. The total force felt by an ion in the com-
bined field is
I. INTRODUCTION

The Fermilab Booster is a rapid cycling, 15 Hz, alter-
nating-gradient synchrotron with radius of 75.47 m, that
accelerates protons from 400 MeV kinetic energy to 8 GeV
[1]. Multiturn H� injection is used; the pulse duration of
the injected linac beam is typically ten booster turns. In
other words, the linac beam fills the booster ring circum-
ference 10 times. During injection, a set of pulsed mag-
nets (ORBUMP) produce a local orbit distortion used to
superimpose the trajectories of the already circulating
beam and the incoming injected beam. The stripping
foil is located at the peak deflection of this orbit bump.

The booster ionization profile monitor (IPM) is the
only device in the booster capable of measuring beam
profiles with a time resolution of a single turn (2:2 �s at
injection) at all times in the cycle. The IPM measures
profiles using ions produced by the interaction of the
beam with the imperfect vacuum of the machine. An
applied transverse clearing field of 8 kV causes the ions
to drift to a microchannel plate (MCP). The beam direc-
tion defines the longitudinal coordinate. The detector is
0.5 m long, with a transverse gap of 12 cm. The MCP plate
is 8� 10 cm2 and has strip spacing 1.5 mm [2,3]. The
response of the IPM depends on the charge of the beam
and so must be calibrated as a function of the injected
number of protons.

To calibrate the IPM response, we compared the beam
1098-4402=03=6(10)=102801(8)$20.00 
at injection, using a single wire, and at extraction, using a
multiwire proportional chamber in the extraction line
MI-8. In order to obtain few-turn resolution during the
injection measurements, we utilized a new technique
where the beamwidth is measured using a stationary
wire at the location of the injection bump. The beam
traverses this wire as the ORBUMP field decays at the
end of the linac beam pulse.

II. THEORETICAL CALCULATION

Our objective is to measure the projection of the beam
distribution on each one of the transverse coordinates. For
an ideal measurement of one projection, the ions’ drift
should be parallel to the other (nonmeasured) coordinate.
For this purpose, the IPM provides an external field which
is applied to the beam along the nonmeasured coordinate.
On the other hand, the field due to the beam itself is
radial, so it affects the motion of the ions in both planes,
distorting the ion profile from an ideal match to the beam
profile. Figure 1 displays sample trajectories of ions in the
IPM with and without the presence of the beam-induced
field. The simulation used to calculate the trajectories is
described in Sec. III. We now calculate the distortion
created by the beam’s self-field.

We start by considering the scattering of particles of a
beam with a Gaussian transverse profile caused by the
field generated by the beam itself as well as an applied
2003 The American Physical Society 102801-1
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FIG. 1. (Color) Simulated ion trajectories in the IPM. Ions are
created by the beam (traveling in the �z direction) in the
center, then drift toward the MCP. The upper diagram is the
idealized case where the field due to the beam is negligible. The
lower diagram shows the distortion of the trajectories for
realistic beam parameters.

PRST-AB 6 CALIBRATION OF THE FERMILAB BOOSTER . . . 102801 (2003)
~FF � r̂r
a
r
�1� exp��r2=2�2�	 � bx̂x; (1)

where r̂r and x̂x are unit vectors in the radial and x direc-
tions, respectively. Here � is the total transverse rms
width of the beam distribution. The coefficient a is pro-
portional to N, the number of protons in the booster,
which we will typically measure in units of 1012. The
external field is perpendicular to the coordinate in which
we are measuring the beam profile. The longitudinal
coordinate (z) is the beam direction. We ignore the curva-
ture of the beam in the longitudinal direction since the
size of the detector is small compared to the circum-
ference of the ring. This calculation assumes a dc beam.
The actual booster beam is effectively dc near injection,
then it is bunched during the cycle. The applied field in
the IPM is small enough that an ion sees several bunches
before it has traveled one � of the beam distribution and
tens of bunches before it reaches the readout. A dc beam is
therefore a reasonable approximation throughout the
booster cycle. A discussion of the effects of beam bunch-
ing versus the IPM’s applied electric field can be found in
Ref. [4].

It is instructive to compare the relative magnitudes of
the applied field and the field due to the beam. A typical
beam at extraction might have � � 2:0 mm and N �
102801-2
2:5� 1012. Then

a
rmax

�1� exp��r2max=2�2�	

b
’
1

24
; (2)

where rmax is the distance from the center of the beam at
which the field due to the beam is maximum. The small
value of this ratio suggests that it makes sense to start by
ignoring the field due to the beam, then reintroduce it as a
perturbation.

It is possible to analytically calculate the average ab-
solute deflection in the y coordinate due to the scattering
by the above force to leading order in the small parameter
a, or, equivalently, the current N. The result is

hjyoutji � hjyinji � KN��1=2
real ; (3)

where yin is the initial y coordinate of the ion and yout is
the y coordinate of its arrival at the MCP. In the absence
of beam self-field effects, the above equation reduces
to yin � yout, i.e., there is no distortion in the profile
measurement.

The constant K is a complicated integral involving the
forces and distributions in the problem, but independent
of the parameters �real and N. We assert without proof
that the scaling behavior above is insensitive to the de-
tailed shape of the beam distribution. Different beam
shapes can only modify the size of K. The value of K
also depends on the details of the IPM such as the dis-
tribution of ions, distance to the wall, etc. We will include
details and a calculation of the variance of y in a full
paper.

III. SIMULATIONS AND PHENOMENOLOGY

We have written a two-dimensional simulation of the
physics of the preceding section using OCTAVE [5]. In the
simulation we distribute particles in the x-y plane accord-
ing to an x=y-symmetric Gaussian distribution of width
�real. We then calculate the individual particle trajectories
using the force given in Eq. (1). Finally, we calculate the y
location of the intercept of each particle trajectory with
the MCP and form a histogram of the intercepts. Figure 1
shows some typical trajectories obtained from our simu-
lation. In the actual booster IPM, the width of the distri-
bution is determined from a fit to a Gaussian plus a linear
background. We followed the same procedure in the simu-
lation, even though the background in the input distribu-
tion is zero in order to best match the fitting procedure
used in the actual IPM. The resulting fitted width,
�smeared, is our estimate of the �measured observed in the
actual IPM.

The parameters of the simulation include the geometry
of the IPM, the strength of the clearing field, and the
beamwidth and current. These parameters are all well
determined. In order to understand the time resolution
of the detector, one additional parameter is needed:
the mass of the ions themselves. However, the spatial
102801-2
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smearing due to the beam charge is independent of the ion
mass [4]. In our simulation, we take the mass to be the
mass of a water molecule. A distribution of ions of differ-
ent species is present in the actual beam pipe [6].

Our simulation is similar to the simulation described in
Graves’ thesis [3], the first use of the booster IPM for
emittance measurements. Since the computer power
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FIG. 2. (Color) Simulations and parametrizations. The crosses are
circles are the results of the simulation in Graves’ thesis, for which
would be observed in the IPM under the assumptions of our model,
per turn. Each one of the plots corresponds to a different initial v
linear and quadratic forms used to parametrize the response of the
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available to us now is substantially greater than what
was available for Graves’ original work, we have been
able to extend our simulations of a larger range of pa-
rameter space and to work to higher accuracy. In Fig. 2 we
show the results of our simulation, as well as the results of
Graves’ earlier work. Our new simulation closely matches
the original simulation in the region of overlap.
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the results of our OCTAVE simulation, including error bars. The
no error bars are available. The smeared width is the width that
and it is plotted versus the beam current, in units of 1012 protons
alue of �real, the value which corresponds to zero current. The
IPM are described in the text, as is the Graves parametrization.
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TABLE I. Results from fits to our simulation for linear and
quadratic parametrizations.

Parameter Fitted value Uncertainty Units

C1 8:44� 10�6 0:61� 10�6 m1�p1=1012

p1 �0:615 0.013 None
C2 1:8� 10�14 1:3� 10�14 m1�p2=1024

p2 �3:45 0.12 None
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FIG. 3. (Color) Power-law fits to parabolic coefficients as de-
scribed in the text. The smallest value of �real was left out of
the quadratic term fit to avoid contamination from higher-order
terms in the series.
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In Ref. [3], the following formula is used to parame-
trize the results of simulations

�real � ~CC1 � ~CC2�measured � ~CC3N: (4)

This formula is currently implemented in the booster
IPM data collection system [2] to estimate the real beam-
width from the measured distribution. The simplest
physical observation we can make about the scaling of
measured versus real beamwidths is that

�measured ! �real as N ! 0: (5)

Unfortunately, the simple parametrization above does
not have this property. Inspired by the theoretical result of
the previous section, we try the parametrization

�measured � �real � C1N�p1
real; (6)

which we refer to as the linear (in N) parametrization.
Postulating the form of the next term in the expansion, we
also consider the quadratic form

�measured � �real � C1N�p1
real � C2N2�

p2
real: (7)

Validating the linear and quadratic parametrizations is
complicated by the fact that there are two independent
variables, �real and N. We tested these parametrizations
by performing two stages of fitting to the results of
the simulation. First, we fit a parabola to the quantity
�measured � �real, where �measured is the smeared � pre-
dicted by the simulation, for each fixed �real using N as
the independent variable. Next, we plot the coefficients of
the parabolic fit as a function of �real. If the linear and
quadratic parametrizations describe the simulation well,
the coefficients of the first parabolic fits should be de-
scribed by power laws. The plots of the coefficients, along
with power-law fits, are shown in Fig. 3. The fitted pa-
rameters are shown in Table I. Returning to Fig. 2, we see
that the power-law fit with the linear term alone is suffi-
cient for most of the parameter space we explored. It is
only in a region where �real becomes small and N be-
comes large that the quadratic term in the power-law fit
becomes important. Even with the quadratic term, beam
sizes around 1 mm are not well described by our parame-
trizations, linear or quadratic. However, beams as small
as 1 mm are never observed in the booster under normal
operating conditions.

The extracted value p1 � �0:615� 0:013 is similar
to, but not exactly the same as, the value � 1

2 obtained in
the calculation of Sec. II. In the calculation we estimated
the overall linear spread in the measured y, hjyoutji. In the
simulation, however, we extracted widths by fitting to a
Gaussian with a linear background, as described above.
We expect the behavior of hjyoutji to be similar to, but not
exactly the same as the width obtained from the fitting
procedure. The small difference in the powers is therefore
not unexpected.
102801-4
IV. MEASUREMENTS

In order to obtain an experimental measure of the IPM
calibration, we took width measurements simultaneously
with the booster IPM, the MI-8 extraction line wire
chamber and the so-called ‘‘flying beam’’ wire. The flying
beam wire is a single wire measuring device located in
the booster injection area at a straight section, long 1,
which can be positioned just outside the beam envelope of
the injected beam, i.e., beam envelope with the ORBUMP
magnets on. At injection, the ORBUMP magnets keep the
beam trajectory displaced by �4 cm with respect to the
nominal beam orbit, so that the injectedH� ions will pass
102801-4
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FIG. 4. (Color) Typical horizontal beam profile measured with the ‘‘flying beam’’ wire.
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through a stripping foil. The wire is placed between the
displaced and nominal orbits. As the ORBUMP current
decays, the beam sweeps through the wire, providing a
measure of the horizontal beam profile. The time resolu-
tion of the wire measurements is determined by the
duration of the ORBUMP current decay, which is roughly
five turns. By recording the ORBUMP current as a func-
tion of time, I�t�, and the response of the wire as a
function of time, a�t�, we can reconstruct the horizontal
profile, a�x�, as measured by the wire by using the known
beam position as a function of current, x�I�. See Fig. 4 for
a display of a typical beam profile as measured by the
flying beam wire.

The turn number for which we extract the profile is
controlled by the timing of the injected beam relative to
the ORBUMP current pulse; injecting a beam closer to
the falling edge of the magnet pulse gives an earlier turn
number. The range of turns for which we can extract beam
profiles with this technique is thus limited by the length
of the ORBUMP pulse, which amounts to roughly
30 turns. There is a drawback in this method: we can
measure only one profile during a given booster cycle. If
we want to measure widths of different turn numbers, we
are only able to do so during different booster cycles.
Also, since the ORBUMP affects only the horizontal
plane, we can only directly calibrate the horizontal IPM
detector. The vertical detector can be calibrated by tem-
porarily rotating it to the horizontal plane.

After injection into the booster, the transverse size of
the beam decreases during acceleration. Since the flying
beam wire measures beamwidths during the first few
turns and the MI-8 chamber measures the beamwidth
after extraction, we were able to see the extremes of the
102801-5
range of beam sizes available. We varied the beam inten-
sity between 1 and 13 injected turns in order to explore a
wide variety of intensities as well. For the analysis pre-
sented here we used data sets collected on November 11,
2002 and December 10, 2002.

In order to directly compare data from different loca-
tions in the booster, the widths obtained from the wire-
based detectors were scaled according to the values of
their � functions relative to the � function at the IPM
location. The scaling for the wire is �wire@IPM ������������������������
�IPM=�wire

p
� �wire � 0:93� �wire, where �IPM �

5:73 m and �wire � 6:63 m at injection [7]. The scaling
for the chamber is �cham@IPM �

�����������������������������
�IPM=�chamber

p
�

�chamber � 0:82� �chamber, where �chamber � 17:97 m at
extraction [8]. The raw data are summarized in Tables II
and III. Also, since the time resolution of the flying beam
wire is roughly five turns, we average the IPM measured
beam profiles from five consecutive turns to compare
with the wire. Examples of horizontal beam profiles as
measured by the IPM for three different beam intensities
are shown in Fig. 5.

In comparing our experimental results with the simu-
lations, we found that all of the data fell in the regime in
which the linear and quadratic power-law fits were indis-
tinguishable. As a simple test of the power-law scaling
seen in the simulation, we plot the quantity ��measured �
�real�=N as a function of �real for all of the data and
simulation points. We take �real to be the width obtained
from the wire or chamber and �measured to be the raw
(uncorrected) width obtained from the IPM. The simula-
tion points for a given value of �real will fall on top of
each other only to the degree that the linear power-law fit
is sufficient to describe the simulation. Since we argued
102801-5



TABLE III. MI-8 chamber data. The IPM width is extracted by a fit to the IPM profile data
using a Gaussian plus a first degree polynomial function.

rms width Error on Fit width Error on
Charge (1012) from chamber chamber width from IPM IPM width No. IPM points

0.800 2.045 0.081 2.604 0.047 43
1.562 2.168 0.041 2.995 0.065 17
2.341 2.250 0.041 3.327 0.039 11
3.135 2.370 0.041 3.744 0.035 12
4.053 2.618 0.041 4.276 0.037 7
4.200 3.300 0.050 4.906 0.100 35

TABLE II. Wire (‘‘flying beam’’) data. The IPM and wire widths are extracted by a fit to the
corresponding profile data using Gaussian plus a first degree polynomial function.

Fit width Error on Fit width Error on
Charge (1012) from wire wire width from IPM IPM width No. IPM points

0.550 3.1100 0.0928 4.552 0.291 20
0.981 3.2375 0.1064 4.288 0.106 43
1.258 3.8882 0.0017 4.393 0.024 17
2.085 3.8305 0.0035 5.053 0.099 17
3.158 3.7846 0.0053 5.273 0.060 11
3.295 3.8057 0.0015 4.868 0.046 11
3.439 4.0525 0.0012 5.445 0.103 7
4.425 3.9399 0.0045 5.158 0.055 12
5.030 3.7570 0.0072 6.406 0.118 15
6.450 3.8778 0.0042 6.532 0.096 10
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FIG. 5. (Color) IPM measured horizontal beam profiles for a beam charge of one (red line), five (cyan line), and eleven (blue line)
injected turns in the machine. The corresponding lines are a fit to the data using a Gaussian plus a first degree polynomial function.
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FIG. 6. (Color) Comparison of our linear parametrization with the data and simulation. The linear parametrization predicts a linear
relationship between the quantities plotted. The simulation has been normalized to match the data.
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that the constant C1 depends on the details of the beam
and IPM, we let it float in order to find the best fit to the
data. We did not vary the parameter p1. The value of C1
we get from the fit to the data, �1:13� 0:06� �
10�5 m1�p1=1012, is approximately one-third larger than
the value we obtained from the simulation (see Table I),
which is reasonable given the simple assumptions present
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FIG. 7. (Color) Horizontal beamwidth in the booster, measured b
(2:2 �s), at injection. Both the calibrated (blue) and uncalibrated
current in the machine, in units of 1012 protons=turn, versus time.

102801-7
in the model. Figure 6 shows the scaling behavior of the
simulation is quite consistent with the data. Since we have
not identified all the sources of systematic errors in the
wire measurements we estimate their size from the scatter
of the points of Tables II and III. This results in a total
error which is approximately 3 times the size of the
statistical error; the total error is shown in Fig. 6.
40 50 60 70 80

umber

uncalibrated width
calibrated width

current

y the IPM as a function of time, measured in booster turns
(red) widths are shown. Also shown (green curve) is the beam
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V. SUMMARY AND CONCLUSIONS

We have obtained a calibration for the FNAL Booster
horizontal IPM detector, using a new device, the flying
beam wire, at injection, and a multiwire proportional
chamber at extraction. The data from these devices were
compared to IPM measurements for different injected
currents in the machine, and the IPM response was fit
to a function determined by a two-dimensional electro-
dynamics model of the detector. We have found that the
relation between the raw beamwidth seen in the IPM and
the real width is well described by the function

�measured � �real � C1N�p1
real; (8)

where N is the current in units of 1012 protons in the
machine, C1 � �1:13� 0:06� � 10�5 m1�p1=1012, and
p1 � �0:615� 0:013. The range of validity in
��real; N� can be extended by adding a term quadratic in
N, but we do not find it necessary in order to reproduce
our data.

The importance of the calibration for the booster IPM
detector and the size of the beam self-field induced
effects is demonstrated in Fig. 7, where both the cali-
brated and uncalibrated IPM beam profiles are shown,
together with the beam current, as a function of time. The
effect is most dramatic during the first 11 turns in the
machine (injection time), since the beam current is
changing. The change of the uncalibrated beamwidth
clearly tracks the beam current change. The calibrated
width shows a much smaller variation during the injec-
tion period.
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